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Application of Extension Theory to PD Pattern
Recognition in High-Voltage Current Transformers

Mang-Hui Wang, Member, IEEE, and Chih-Yung Ho

Abstract—This paper presents a novel partial-discharge (PD)
recognition method based on the extension theory for high-voltage
cast-resin current transformers (CRCTs). First, a commercial PD
detector is used to measure the three-dimensional (3-D) PD pat-
terns of the high-voltage CRCTs, then three data preprocessing
schemes that extract relevant features from the raw 3-D-PD
patterns are presented for the proposed PD recognition method.
Second, the matter-element models of the PD defect types are built
according to PD patterns derived from practical experimental
results. Then, the PD defect in a CRCT can be directly identified
by degrees of correlation between the tested pattern and the
matter-element models which have been built up. To demonstrate
the effectiveness of the proposed method, comparative studies
using a multilayer neural network and k-means algorithm are
conducted on 150 sets of field-test PD patterns of 23-kV CRCTs
with rather encouraging results.

Index Terms—Current transformers (CTs), extension theory,
matter-element model, partial discharge (PD).

1. INTRODUCTION

ARTIAL-DISCHARGE (PD) recognition is an important

tool for evaluating the insulating capability of high-voltage
(HV) power apparatus [1]-[3]. PD happens when the local elec-
tric field exceeds the threshold value and produces a partial
breakdown of the surrounding medium, and it is a symptom and
a cause of insulation deterioration. Therefore, PD testing can be
used as an insulation diagnosis tool with the aim to optimize
both maintenance and life-risk management in the power utili-
ties [3]-[8].

The quantities of PD can carry information about the insu-
lating system’s condition to the outside world by their electrical
signals. Using commercial PD detectors can generally produce
PD pulses on an elliptic time base, and an experienced expert
can use the PD patterns to identify the defect types in the tested
apparatus. The main parameters of the PD patterns are phase
angle ¢ and discharge magnitude q.

Various pattern clustering techniques, including expert sys-
tems (ES) [11], fuzzy clustering [12], and neural networks (NN)
[1], [2], [13], [14] have been extensively used in PD recogni-
tion. Combinations of personal computers (PCs) and expert and
fuzzy systems bring up the possibilities of automating recog-
nition. However, it is hard to use these rule-based methods to
acquire pictorial knowledge and hard to maintain the database
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of decision rules. MNNs with backpropagation algorithms have
been successfully used in PD automated recognition since the
latter half of 1991. The main advantage of an MNN over other
classifiers is that it can directly acquire experience from the
training data, and overcome some of the shortcomings of the ex-
pert system. However, the training data must be sufficient and
compatible to ensure proper training; its convergence of learning
is influenced by the network topology and values of learning
parameters. A further limitation of the MNN approach is the
inability to produce linguistic output, because it is difficult to
understand the content of network memory.

To overcome the limitations of the ES and MNN mentioned
above, a new PD recognition method, based on the extension
theory, is presented for high-voltage CRCTs in this paper. The
extension theory concept was first proposed by Cai to solve
contradictions and incompatibility problems in 1983 [15]. Ex-
tension theory consists of two parts: matter-element model and
extended set theory. With the combination of extension theory
and management science, cybernetics, information science,
and computer science, extension engineering methods have
been applied to some engineering fields, such as economic
engineering, management engineering, decision processes,
and process control [16], [17]. Now, extension theory has
been used in the research field of artificial intelligence (AI)
and its relevant sciences. In this paper, we will first attempt
to apply the extension theory to PD recognition. First, three
data preprocessing schemes that extract the relevant features
from the raw three-dimensional (3-D) PD patterns are pre-
sented for the proposed PD recognition method. Second, the
matter-element models of the PD defects are built according to
PD patterns derived from practical experimental results; then,
the PD defects in CRCTs can be directly identified by degrees
of correlation between the obtained patterns and the built-up
matter-element models. To demonstrate the effectiveness of the
proposed method, 150 sets of field-test PD patterns from 23-kV
CRCTs were tested. Results of the studied cases show that the
proposed method is suitable as a practical solution.

II. OUTLINE OF EXTENSION THEORY

Extension theory is a new kind of knowledge system based
on the concepts of matter-elements and extension sets. It was
first proposed by Cai to solve contradictions and incompatibility
problems in 1983 [15]. The hard core of extension theory is
two theoretical pillars that include matter-element theory and
the theory of extension set. The former studies matter-elements
and their transformations; it can be easy to represent the na-
ture of the matter. The latter is the quantitative tool of extension
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theory; it can represent the correlation degree of two matter-el-
ements in the designed correlation functions. The combination
of these two pillars with other science generates the respective
knowledge, which is the soft part of extension theory. Extension
theory makes it possible to develop formalized descriptions for
activities of creative thinking, such as knowledge innovation,
new product design, and strategy generation [17]. Some defini-
tions of extension theory are introduced in the next section.

A. Matter-Element Theory
In extension theory, a matter element uses an ordered triad as
the basic element for describing things as follows:

R=(N,cuv) (1)

where N represents the matter; ¢ reprsents the characteristics; v
is N’s measure of the characteristics ¢, where v can be a value or
an interval. If we assume that R = (N, C, V') is a multidimen-

sional matter-element, C = [cy, ¢a, ..., ¢y,] is a characteristic
vector and V' = [v1,va, ..., v,] is a value vector of C, then a
multidimensional matter element is defined as
Rl N‘, C1,01
R C2,V
R=(N,C,V)=|""]| = . )
R, CnyUn

where R, = (N, c;,v;) (i = 1,2...n) is defined as the sub-
matter element of R. For example

| John, Height,180 cm

R= . 3
Weight, 82 kg )

It can be used to state that John’s height is 180 cm, and his
weight is 82 kg. Matter has many characteristics, and one
characteristic or one characteristic element can be possessed by
many matters, etc. Some basic formulations in extension theory
can be expressed as follows:

Nature 1: A matter has many characteristics, called one
matter many characteristics, written as

N A (N,c,v) 4 {(N,e1,v1), (N, c2,v2), ..., (N, Cnyvn)}
“4)

which shows that matter N can have characteristics
C1,C5,...,C,. The symbol “4” indicates the mean of
the extension.
Nature 2: One characteristic can be possessed by many
matters, called one characteristic many matters, written
as

(N, c,v) 4 {(N1,c,v1), (N2, ¢,v2), ..., (Np,c,v)}. (5)

Nature 3: One characteristic-element can be possessed
by many matters, called one characteristic-element many
matters, written as

(N7 C,’U) a {(thhv)? (N27027U)7 te (Nnvcnvv)} . (6)

Using the matter-element model, we can describe the
quality and quantity of a matter, which is a new concept
in mathematical territory.
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B. Summary of Extension Set

Set theory is a kind of mathematical scheme that describes
the classification and pattern recognition about an objective. A
Cantor set describes the definiteness of matters; a fuzzy set de-
scribes the fuzziness of matters. The extension set extends the
fuzzy set from [0, 1] to (—o00, c0) [16]. As a result, it allows us
to define a set that includes any data in the domain. An exten-
sion set is composed of two definitions.

Definition 1: Let U be a space of objects and z a generic ele-
ment of U, then an extension set £ in U is defined as a set of or-
dered pairs as follows:

E={(ylreUy=K@)e(-x0)} (D

where y = K () is called the correlation function for extension
set //. The K () maps each element of U to a membership grade
between —oo and co. An extension set £ in U can be denoted by

E=EtUZ,UE" (8)
where
E* = {(z,y)lz € U,y = K(z) > 0} )
Zo = {(z,y)|lz € U,y = K(z) = 0} (10)
E™ ={(z,y)|lz € U,y = K(x) < 0}. (11)

In(9)-(11), E*, E~,and Z,, are called, respectively, the positive
field, negative field, and zero boundary in F.

Definition 2: If X, = (a,b) and X = (f, g) are two intervals
in the real number field, and X, C X, where X, and X are the
classical (concerned) and neighborhood domains, respectively.
The correlation function in the extension theory can be defined
as follows:

K(x) { —p(z, X,), e X, a2)
T)= p(7,X,)
ety T EXo
where
p(w,Xo)z‘x—a;b‘—b;“ (13)
plz, X) = P—%‘—%. (14)

The correlation function can be used to calculate the member-
ship grade between x and X,,. The extended membership func-
tion is shown in Fig. 1. When K (x) > 0, it indicates the degrees
to which = belongs to X,. When K (z) < 0, it describes the de-
gree to which x does not belong to X,. When —1 < K (z) < 0,
itis called the extension domain, which means that the element
still has a chance to become part of the set if conditions change.

III. PROPOSED PD PATTERN RECOGNITION METHOD
A. Structure of the PD Measuring System

The structure of the used PD measuring system is shown in
Fig. 2. It includes a commercial PD detector (TE 571), a PD
analyzer, an Internet communication system, a capacitor cou-
pling circuit, a high-voltage (HV) control system, and the tested
high-voltage CRCT. The practical experimental circuit in the
shielded laboratory is shown in Fig. 3. For testing purposes,
four kinds of experimental defect with artificial insulation de-
fects were purposely manufactured by an electrical manufac-
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Fig. 3.

Practical experimental circuit of PD test.

turer. These PD producing defect models include no defect
(normal), low-voltage (LV) coil PD, HV corona discharge, and
an HV coil PD. This testing system was set up in the Taiwan
Electric Research and Testing Center (TERTC); that is an
independent electrical testing institute in Taiwan. Fig. 4 shows
a typical PD waveform in the window of the PD detector, which
is most useful for an experienced maintenance engineer. In the
testing process, all of the measuring data are analog-to-digital
converted in order to store them in the computer memory. Then,
the PD pattern analyzer can be programmed according to the
digital PD signal with the setup program to recognize the defect
type of the testing object.
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Fig. 4. Typical PD waveform in the PD detector [18].

B. Proposed Data Preprocessing Methods

The important parameters to depict PD patterns are phase
angle ¢, discharge magnitude ¢, and repetition rate n. These
quantities can produce the 3-D patterns by virtue of advanced
programs. The typical PD patterns of tested CRCTs in the
testing field are shown in Fig. 5, in which the shape of a pattern
is characteristic for a certain type of defect. Therefore, using the
pattern recognition method allows the identification of different
defect types in the tested CRCT. In previous studies, directly
using the density distribution of 3D patterns with an MNN for
PD recognition [13], [14], the main problem is that the structure
of the MNN has a large number of neurons with connections
due to the large amount of matrix elements; therefore, the
MNN-based classifier takes a long time to train, and has poor
generalization properties just because of containing too many
free parameters. To improve the situation, three preprocessing
schemes that extract relevant features from the raw PD patterns
are presented in this paper. The detailed data manipulation
process is shown in Fig. 6. A typical PD pattern is converted
into ten represented values for ten phase windows. The width of
every phase window is set to 36°. The represented value of every
phase window can be calculated by three schemes as follows:

Scheme I: mean value of the total discharge magnitude

> > Nk
v = 2 . fori=1,2,...,10.  (15)
2 20 ik
j=1 k=1
Scheme II: mean value of the maximum discharge
magnitude
2. 957; max
=2 fori=1,2,...,10 (16)
Z N5 max
j=1
Tj max = max{njx}. 17
Scheme III: maximum discharge magnitude
Vi = @j* X Mj*max, fori =1,2,...,10 (18)
where
Nj*max = Max{n,;-x} (19)
¢;+ =max{g;}. (20)
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Fig. 5. Four typical defect types of PD pattern. (a) No defect (normal).

(b) HV corona discharge. (c) LV coil PD. (d) HV coil PD.

When the preprocessing of the PD pattern has been
completed, then the PD recognition stage can be
started.

C. Extension PD Recognition Method

In this paper, the proposed PD recognition method is based
on the extension theory; it is called the extension PD recogni-
tion method (EPDRM). The first step of the EPDRM is to for-
mulate matter-element models of defect types, and then defect
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Fig. 6. Proposed date preprocessing schemes.

types of tested CRCTs can directly be identified by the degree of
extended correlation function. The proposed EPDRM has been
successfully implemented using PC-based software for defect
recognition of high-voltage CRCTs. The proposed EPDRM is
described as follows.
Step 1) Formulating the matter-element of every typical de-
fect type as follows:

R; =(T;,Ci, V;)

(T;,  c1, (@i, bin) )
c2, (a2, bi2)
c3, (a3, bi3)
ca, (aig, bid)
_ cs, (s, bis)
c6, (aie,big) [’
cr, {air, bir)
C8, <a187b28>
Co, <ai97bz9>
\ c10, (@10, bir0) /

fori=1,2,...,4. 1)

T; sth defect type of PD pattern;
cj  jth phase window;
a;;  low-bounds value of classical domains in the jth phase
window for sth defect type;
bi;  the upbounds value of classical domains in the jth
phase window for ¢th defect type.
The ranges of classical domains V' = (a, b) of every
phase window can be directly obtained from the low
bounds and upbounds of field-test records, or deter-
mined from previous experience. Then, the neigh-
borhood domain V' = (f, g) of classical domains,
the possible range values of every characteristic can
be determined. They are set as f = 0.95 X a and
g = 1.05 x b in this paper.
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Step 2) Input a PD pattern of tested CRCT; and formulating
the matter-element of the PD pattern as follows:

(Ty, c1, Vg1 )
C2, Ut2
C3, Ut3
C4, Ut4
Cs5, Uts
Ce, Ute
C7, U7
Cg, Ut8
Co, Utg

\ €10, Vt10 /

Ry = (T1,Cp, Vi) = (22)

where v;1, Vg2, . . ., U410 are the values of tested PD
pattern in every phase window that can be calcu-
lated by one of three schemes, as in Section III-B.
Step 3) Calculating the degrees of correlation of the tested
CRCT set with the characteristic of the typical de-
fects by the proposed extended correlation function

as follows:
K](’Utj) = Ibij*é’fi]‘ V. ) if Uty € ‘/1,]
) ] p(ve;,Vij . ) .
p(v45,Vij)—p(vi4,Vij)’ if Utj g ‘/7,]
i=1,2,...,4; j=1,2,...,10 (23)
where
Vij =(aij, bij) (24)
Vij =(fij» 9i5)- (25)

The proposed extended correlation function can be
shown as in Fig. 7, where 0 < K(v) < 1 corre-
sponds to the normal fuzzy set. It describes the de-
gree to which v belongs to V. When K(v) < 0, it
indicates the degree to which v does not belong to
V', which is not defined in the fuzzy theory and is a
main advantage of the extension theory.

Step 4) Setting the weights of every degree of correlation
Wy, Wy, -+, Wi, depending on the importance
of every feature in the recognition process. In this
paper, all ten weights are set at 1/10.

Step 5) Calculating the indexes of correlation for every de-
fect type

10
C,L-:ZWJ»K,L-]-7 i=1,2,...,4. (26)
j=1

Step 6) Normalizing the indexes of correlation into an in-
terval between —1 and 1 as (27). This process will
be beneficial for fault diagnosis

ZCL - Cmin - Cmax .
A = : max 19 4 (27)
Cmax - Cmin
where
Cmax = lnﬁlzagxll{CL} (28)
Cmin = min G} (29)
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Fig. 7. Proposed extended correlation function.

Step 7) Ranking the normalized defect indexes, and finding
the maximum index of correlation (or 1) to de-
tect the defect type of the tested CRCT. The defect
recognition rule is shown as follows:

IF (A = 1) THEN (T} = T}) (30)
Equation (30) expresses that if A\, = 1, then the
defect type of this tested CRCT is kth defect type.
Going back to step 2) for the next tested CRCT
when the recognition of one has been completed,
until all have been done.

Step 8)

The main advantage of the proposed method is that it can
provide more detailed information about the defect type of the
tested CRCT set by indexes of correlation. It is also the pro-
posed method that can determine the main fault severity com-
pared to other types, and identify the defect likelihood by the
fault indexes. It is most helpful in the diagnosis of multiple de-
fects. Moreover, the proposed method does not need to learn
or to tune any parameters, and a simple software package can
easily implement it.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed method has been implemented according to the
field-test PD pattern collected from TERTC. Associated with
their real defect types, there is a total of 150 sets of sample
data under different testing conditions. The testing process fol-
lowed the IEC60270 Standard [18]. The tested objects are some
EWF-20 DB types of CRCTs that use epoxy resin for HV in-
sulation. The rated voltage and current of the tested CRCTs are
23 kV and 60 A/5 A, respectively. Some experimental results
are shown as follows.

A. Results of the Data Preprocessing

As stated in Section III-B, Fig. 8 shows the 150 input patterns
of the four defect models produced by the three data prepro-
cessing methods. It is clear that the input patterns of scheme |
are similar to the input patterns of scheme II, and the four defect
models have quite different patterns after data processing. It is
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Fig. 8. Typical input patterns of four PD defects with different data
preprocessing schemes. (a) PD patterns of scheme I. (b) PD patterns of scheme
II. (c) PD patterns of scheme III.

very clear in Fig. 8 that the input patterns of no defect (a range
of T1) have the lower discharge magnitude in all observed phase
windows; the input patterns of HV corona discharge (range of
T5) have the high discharge magnitude in six, seven, eight, and
nine windows. The input patterns of LV coil PD (range of 713)
have higher discharge magnitudes in one, two, six, and seven
windows. Oppositely, the input patterns of HV coil PD (Ty)
have higher discharge magnitudes in one, two, three, and five
to seven windows. It is shown that the proposed data prepro-
cessing schemes will be most useful for PD pattern recognition.
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Fig. 9. Typical windows of the proposed PD recognition system.

TABLE 1
PARTIAL RECOGNITION RESULTS

Pattern Correlation Indexes Defect
no. A A As Ay Types
1 1 -0.07 -0.65 -1 Normal
2 1 -0.12 -0.61 -1 Normal
3 1 -0.40 -0.57 -1 Normal
34 - 1 0.00 | -021 | Y sorona
ischarge
35 -1 1 002 | 012 | feorom
ischarge
70 -1 -0.86 1 0.28 LV coil PD
71 -0.49 -1 1 0.83 LV coil PD
118 -0.62 -1 -0.88 1 HV coil PD
119 -0.65 -1 -0.97 1 HV coil PD
120 -1 -0.84 -0.26 1 HYV coil PD

*ﬂ.l : Correlation index of defect type no. 1 (i.e. Normal).
*2 5t Correlation index of defect type no. 2 (i.e. HV corona discharge).

* /13 : Correlation index of defect type no. 3 (i.e. LV coil PD).

* /’14 : Correlation index of defect type no. 4 (i.e. HV coil PD).

B. Software of the Automated PD Recognition System

The proposed method has been implemented by win-
dows-based software in a Pentium IV-PC. Fig. 9 shows a
typical window of automated recognition software; there a typ-
ical PD pattern has been converted into ten represented values
for ten phase windows by the proposed data preprocessing
schemes. The processed data will be sent to the next stage for
PD recognition. Table I shows partial results of the proposed
PD recognition system. It very clearly recognizes the defect
types of tested CRCT. For example, in pattern 1, the index of
correlation with the defect type 1 (i.e., normal or no defect)
equals 1 (or maximum value), which is indicative of no defect
(i.e., normal). In comparison, the indexes of correlation with
other defect types are all negative values; therefore, CRCT no.
1 does not need to be checked in the future. Moreover, the pro-
posed method cannot only detect the main defect of the tested
object; it can also provide useful information for future trend
analysis by the indexes of correlation. For example, pattern no.
71 was recognized to have a main defect type of LV coil PD
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TABLE 1II
RECOGNITION PERFORMANCES OF DIFFERENT METHODS
WITH DIFFERENT PERCENTAGES OF ERRORS ADDED

Perce. of Recognition rate (%)
errors MNN |K-means* Proposed methods #
Scheme [ Scheme II | Scheme II1

* 0% 100% 92% 100% 100% 100%

* 5% 98% 75% 100% 100% 98%

* 10% 96% 73% 100% 100% 97%
*15% 93% 70% 100% 100% 96%
+20% | 88% | 68% 100% 100% 95%
+25% 85% 67% 98% 98% 95%
*30% 80% 64% 96% 93% 93%

*Average of 10 random trials.

#Scheme I: using scheme I of data preprocessing with the proposed EPDRM.
#Scheme II: using scheme II of data preprocessing with the proposed EPDRM.
#Scheme I1I: using scheme I1I of data preprocessing with the proposed EPDRM.

due to the maximum index of correlation with defect type no. 3
(i.e., A3). On the other hand, the index of correlation A4, about
0.83, also shows that this CRCT had a medium possibility of
defect type no. 4 (i.e., HV coil PD). Conversely, because of
a negative index of correlation, CRCT no. 71 had a very low
possibility of defect type no. 2 (i.e., HV corona discharge).
This information will be most useful to find the hidden defects
of CRCT for a maintenance engineer.

C. Recognition Accuracy of the EPDRM

The input data to a PD recognition system would unavoidably
contain some amounts of noise and uncertainties. The sources of
error include environmental electromagnetic (EM) noise, trans-
ducers, human mistakes, etc. To take into account noise and un-
certainties contained in the data collected for PD pattern recog-
nition, 150 sets of testing data in this paper were created by
adding £5% through £30% random uniformly distributed sam-
ples to the testing data to appraise the noise-tolerant abilities of
the proposed EPDRM. The test results using different amounts
of error added are given in Table II with the different recogni-
tion methods. Usually, the error containing data indeed degrade
the recognition capabilities in proportion to the amounts of error
added. This table shows that these methods all show high toler-
ance to the errors contained in the data. The proposed method
with schemes I and II has a significantly higher recognition ac-
curacy of 100% with +20% errors added, but the accuracy of
scheme III is lower than the other schemes. However, the pro-
posed methods with all three data preprocessing schemes show
good tolerance to added errors, and have accuracies of 96%
to 93% in the case of £30% added error. Contrarily, the ac-
curacy of an MNN-based method [11] and k-means algorithm
[19] are, respectively, only 80% and 64% in the same condi-
tions. Moreover, the proposed method does not need to learn, but
only to find the low bound and upperbound of the input features.
This is rather beneficial when implementing the PD recognition
methods in a microcomputer for a real-time PD detecting device
or a portable instrument.

V. CONCLUSION

This paper presents a novel PD recognition method based on
the extension theory and three data preprocessing schemes for
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PD recognition in high-voltage CRCTs. Compared with other
traditional methods, the proposed method does not require par-
ticular artificial parameters and learning processes. In addition,
the calculation of the proposed recognition algorithm is fast and
very simple. It can be easily implemented by PC-based soft-
ware. According to the experimental results, schemes I and II
of data preprocessing are suggested for PD recognitions due to
higher accuracy and error tolerances. Test results show that the
proposed method cannot only recognize the main defect type of
the tested object; it can also detect useful information for future
trends and multidefects analysis by the correlation indexes. This
new approach merits more attention, because extension theory
deserves serious consideration as a tool in PD recognition prob-
lems. We hope this paper will lead to further investigation for
other applications.
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